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Abstract
Continuum models have proved their applicability to describe nanopatterns produced by
ion-beam sputtering of amorphous or amorphizable targets at low and medium energies. Here
we pursue the recently introduced ‘hydrodynamic approach’ in the cases of bombardment at
normal incidence, or of oblique incidence onto rotating targets, known to lead to self-organized
arrangements of nanodots. Our approach stresses the dynamical roles of material (defect)
transport at the target surface and of local redeposition. By applying results previously derived
for arbitrary angles of incidence, we derive effective evolution equations for these geometries of
incidence, which are then numerically studied. Moreover, we show that within our model these
equations are identical (albeit with different coefficients) in both cases, provided surface tension
is isotropic in the target. We thus account for the common dynamics for both types of incidence
conditions, namely formation of dots with short-range order and long-wavelength disorder, and
an intermediate coarsening of dot features that improves the local order of the patterns. We
provide for the first time approximate analytical predictions for the dependence of stationary
dot features (amplitude and wavelength) on phenomenological parameters, that improve upon
previous linear estimates. Finally, our theoretical results are discussed in terms of experimental
data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is a long tradition for the continuum description of
the morphological dynamics of a solid surface undergoing
ion-beam sputtering (IBS) (see [1] and references therein).
While more traditional approaches employed a macroscopic
viewpoint, the current availability of surface measurement
techniques of ever-increasing spatial and temporal resolutions
has driven the formulation of continuum descriptions that
incorporate micro- or mesoscopic information. The pioneering

work in this respect is due to Bradley and Harper (BH) [2]
who, building upon Sigmund’s description [3] of the statistics
of collision cascades in amorphous targets at low to medium
energies, derived an evolution equation for the surface height.
Such a formulation allowed them to predict the orientation for
ripple formation as a function of the angle of incidence, and
other experimental features of pattern formation by IBS. The
work of BH, while remarkably successful, has a number of
limitations (see a review in [4]) that fostered further theoretical
work in order to improve upon it (for a review, see [5]). We
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will collectively refer to these as one-field models, in which
a single function describes the physical state of the system,
namely the field h(r, t) providing the target height value at
every point r above a reference plane, at time (fluence) t . These
models have found an increased interest after the experimental
verification [6–8] of the capabilities of IBS as a surface
nanostructuring technique, in particular for the production
of quantum dots. This type of pattern formation requires
either normal incidence, or else oblique incidence onto rotating
targets [5].

When applied to describing quantum dot production by
IBS, one-field models have met a number of limitations.
Leaving aside the case of targets that remain crystalline
under irradiation (mostly metals, see [9]) and focusing
on amorphous or amorphizable targets (semiconductors and
insulators [5]), one-field models predict a surface morphology
that is disordered and rough at long fluences, contradicting
the experimental observation of large domains of ordered
nanostructures (dots). Moreover, such models, being based
on the Kuramoto–Sivashinsky (KS) equation [10] and its
anisotropic and noisy generalization [11, 12], they do not seem
able to account for the strong intermediate coarsening of dot
characteristics (amplitude A and wavelength l) that is fre-
quently observed in these experiments. Moreover, wavelength
coarsening is a fully nonlinear effect: given the analytical
complexity of nonlinear systems, one-field predictions for
the dependence of A and l on phenomenological parameters
have remained to date restricted to linear estimates, which
naturally may lack even qualitative reliability for experiments
in which coarsening is actually observed. Another challenge
for theoretical models is the dependence of some of the
mentioned observables (like A and l) on physical variables
such as energy, fluence or temperature. Many of the former
theories are unable to describe the mentioned dependence.

Physically, one-field descriptions correspond to a sim-
plification by which the complex microscopic dynamics is
encoded in that of the single height field. In particular,
this requires relaxation effects other than sputtering, such as
surface diffusion, to be incorporated in an ad hoc fashion.
Moreover, they usually neglect redeposition effects, known to
play a role in, for example, the correct prediction of sputtering
yields [13]. Recently, a different class of models has been
introduced [5, 14–18] in which the evolution of the height
is coupled to that of a second field R(r, t), which describes
the density of mobile species that implement actual material
transport at the surface4. For targets on which defects pile-
up with continuing irradiation, a thin surface amorphous layer
develops, across which viscous flow can eventually occur, as,
for example, in the case of silica [19]. In such cases, R
can be approximately taken as the actual thickness of that
layer. Although originally inspired in continuum descriptions
of macroscopic pattern formation on granular systems (aeolian
and underwater sand dunes), analogous two-field descriptions
have been also employed for nanoscopic systems, such as, for
example, growth by MBE (see [20] for a review).

4 Below, R will be taken with physical dimensions of height. Transforming a
surface density field to a height field is achieved simply through multiplication
by the atomic volume.

Recent work [5, 16–18] on two-field models of IBS
has highlighted their capabilities to describe a large number
of qualitative features of the experiments—such as in-plane
ordering, wavelength coarsening, non-uniform ripple motion,
etc—linking them to the main phenomenological parameters
describing the experimental conditions. To date, the most
detailed studies [5, 18] have focused on the more general
case of oblique incidence and the ensuing ripple formation.
In this paper, we focus on dot formation in which in-plane
symmetry is restored, namely for normal incidence or for
oblique incidence onto rotating targets. We will provide
details on the derivation of the effective height equations
describing the pattern formation near instability threshold and
will study them numerically and analytically. Thus, we are
not merely deriving a mathematically equivalent model for
normal or oblique incidence but we are also focusing on the
link between theory and experiment. More specifically, we
provide for the first time approximate analytical predictions
for the dependence of stationary dot features (amplitude and
wavelength) on phenomenological parameters, which improve
upon previous linear estimates. Finally, our theoretical results
are compared with experimental data.

2. ‘Hydrodynamic’ model

Given the above definition of height h and mobile layer
thickness R, their dynamics are coupled as

∂t R = (1 − φ)�ex − �ad + D∇2 R, (1)

∂t h = −�ex + �ad, (2)

where �ex and �ad are, respectively, the rates at which
material is dislodged from the immobile target due to ion
bombardment (locally decreasing the value of h) and the
rate at which mobile material incorporates back into the
immobile bulk (locally increasing the value of h). In the
equation for R, we have assumed that mobile material diffuses
at the surface with surface diffusion constant D. Note,
we assume no spontaneous (beam-independent) ‘evaporation’,
so that we neglect evaporation/condensation effects [21, 22]
(equivalently, we are assuming that the pressure in the vapor
phase is negligible). The dislodged material may be either
sputtered away or added back to the mobile thickness R with
an efficiency (1 − φ) ≡ φ̄. Thus, the fraction of atoms
actually sputtered is represented by φ so that, for φ �= 1, local
redeposition is partially allowed. Physically, such an addition
back to the mobile layer corresponds mostly to material which
has not received the right energy and/or momentum to be
sputtered away, but which is actually dislodged from the
immobile substrate, so that it becomes available to transport.
For φ = 1 all eroded atoms are sputtered away, while in
the φ = 0 case the sputtering yield is zero. In the last case
the effect of the ion beam is simply to provide material for
surface transport while conserving the total mass. We will
refer to the latter two cases as zero-redeposition and complete-
redeposition limits, respectively. They will constitute useful
limiting cases below.
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In general, the rates of excavation and addition are
necessarily functions of the surface morphology and the
thickness of material transport (namely, of the space derivatives
of h and R, respectively). For arbitrary angles of incidence5,
the excavation rate �ex reflects the lack of in-plane symmetry
and, to lowest orders in height derivatives, has the shape

�ex = α0[1 + α1x ∂x h + ∇ · (α2∇h) + ∂x∇ · (α3∇h)

+
∑

i, j=x,y

α4i j∂
2
i ∂2

j h + ∂x h ∇ · (α5∇h) + ∇h · (α6∇h)],

(3)

where αi = diag(αi x , αiy) are 2 × 2 diagonal matrices for i =
2, 3, 5, 6. While the parameter α0 provides the rate of erosion
for a planar target, setting the timescale for excavation, the
remaining coefficients αi jk mediate the dependence of the local
velocity of erosion on the surface morphology and incorporate
the effect of beam parameters such as the average energy and
flux, and those characterizing the statistics of energy deposition
via collision cascades within the target. An important example
is, of course, provided by those associated with Sigmund’s
Gaussian distribution [2, 11, 12], although improvements in
the description of collision cascades (see, e.g., [23] for the
case of Cu) can be readily incorporated into equation (3).
Thus for instance, using Sigmund’s statistical description, the
coefficients α2 j are positive favoring excavation at surface
minima rather than at surface maxima, leading to the ripple
instability [24, 2]. An opposing stabilizing effect that would
provide negative contributions to α2 j would be, for instance,
direct knock-on effects [16], but we will neglect them since
they are believed to be typically small for the range of energies
of interest here [25].

As for the local rate of addition for mobile species back
into the immobile target, naturally it should be susceptible
to enhancement by the presence of the beam due to the
induced increase in the density of diffusing species, but within
our framework we would like to have also surface diffusion
currents which are not necessarily proportional to the ion
flux but are, rather, thermally activated. Such currents are
known to favor, on average, addition at concave surface
positions (minima) rather than at convex surface locations
(maxima) [21, 22]. To this end, we allow for a non-zero
thickness of mobile material Req even in the absence of
excavation (�ex = 0) or redeposition (φ = 1) and write

�ad = γ0
[
R − Req(1 − γ2∇2h)

]
, (4)

where γ0 is the mean nucleation rate for a flat surface. This
form for the rate of addition allows us to implement the Gibbs–
Thomson effect [21, 22]. Indeed, it can be shown [18] that, in
the absence of erosion, equations (1), (2) and (4) reproduce
exactly Mullins’ thermal surface diffusion with D = Ds the
surface diffusivity, Req = νs/nv , where νs is the concentration
of mobile surface species, and n−1

v the atomic volume γ2 =
γ /(kBT nv) � 0, with γ the surface free energy per unit area
(which we will assume isotropic) and kB Boltzmann’s constant.
Note, generalizations of this formula are feasible, in which, for

5 In such a case we assume the projection of the beam to be along the positive
x direction.

example, the surface tension γ is anisotropic but, being here
mostly interested in the case of amorphizable targets, we will
mostly consider isotropic surface tension.

3. Normal incidence

3.1. Effective equation

We start by considering the simplest case, in which ions
impinge along trajectories that are perpendicular to the initial
target plane. In such a case, the shape of the excavation rate
simplifies, since coefficients multiplying terms that break the
x ↔ −x symmetry are zero and the x ↔ y symmetry is
restored. This can be explicitly checked whenever analytic
expressions for coefficients αi jk are available as functions of
the incidence angle, as in the case of Sigmund’s Gaussian
distribution [11, 12] or the modified exponential distribution
in [23]. Thus, �ex (equation (3)) simplifies to

�ex = α0[1 + α2∇2h + α4∇4h + α6(∇h)2]. (5)

In order to gain insight into the surface dynamics that
is described by this model, we can perform a numerical
integration of a simplified 1D surface that is obtained if we
set to zero all space derivatives in the y coordinate. Results
are shown in figure 1. As time proceeds, we can appreciate
in panel (a) the appearance of a typical cell (dot) size that
increases with time. Moreover, the thickness R of the mobile
layer evolves rapidly and adapts to the shape determined by the
h field. Note, we have employed a value ε ≡ α0/(γ0 Req) that is
small in standard experimental conditions [18]. The smallness
of this parameter quantifies the large separation in timescales
between mobile species diffusion and the much slower driving
associated with the ion beam. Given that R evolves with the
fast (diffusion) processes6, this means one can approximately
set ∂t R ≈ 0 at every instant and solve R in terms of (the
derivatives of) h from equation (1). Mathematically, such
a program can be consistently implemented by setting up a
perturbation expansion in terms of ε and employing a multiple
scale analysis. Details can be found in [18]. The final outcome
is a closed evolution equation that only involves the height
field. To lowest nonlinear order and in the present normal
incidence conditions, the equation is

∂t h = v0 + ν∇2h −K∇4h + λ(1)(∇h)2 − λ(2)∇2(∇h)2, (6)

where

v0 = −α0φ, ν = −α0φα2,

K = DReqγ2 + α0 [φα4 − α2
] ,

λ(1) = −α0φα6, λ(2) = −α0α6
,

(7)


 = φ̄D

γ0
− φReqγ2. (8)

Equation (6) generalizes the KS equation through
appearance of the conserved nonlinearity with parameter

6 Indeed, R evolves exponentially fast with rate γ0, as is apparent when
substituting (4) into equation (1).
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Figure 1. (a) Time evolution for the mobile surface layer R (solid line) added to the surface height value h (dashed line) for a 1D interface as
described by equations (1)–(2) using (4) and (5) for φ̄ = 0.99, α0 = 0.03, α2 = 30, α6 = −3, α4 = 0, Req = γ0 = γ2 = 1 and D = 10.
(b) Dynamics of h described by the 1D two-field model for parameters as in (a) (green line) and by the effective equation (6) with parameters
as obtained from (7): v0 = −0.0003, ν = −0.009, K = 1.099, λ(1) = 0.0009 and λ(2) = 0.8901 (black line). In both panels time increases
top to bottom. Notice the different vertical scales.

λ(2) [16]7. It has also appeared in different contexts,
such as growth of amorphous thin films [27], and even in
(macroscopic) pattern formation on snow fields [28]. In
the case of IBS nanopatterning, it was initially obtained
within a higher expansion of one-field models [29], although
in such a case it is seen to break down as a continuum
description [30, 31], see below. Soon after, it was
properly obtained [16] within a two-field description of IBS
based on a model with a different—albeit asymptotically
equivalent [32, 18]—choice for the rate of addition �ad.

As mentioned above, for typical distributions of energy
deposition, α2 is a positive number [2, 12, 23] and therefore
ν < 0. Thus, just as in the KS system, equation (6) features a
band of linearly unstable Fourier modes hk(t) � exp(ωk t),
associated with k values that make the dispersion relation
ωk = −νk2 −Kk4 a positive number. Generically, on the other
hand, K is expected to be a positive coefficient. Thus, for short
times during which nonlinearities are negligible, equation (6)
predicts formation of a dot (cell) structure with a typical size
provided by the inverse of the wavevector, k�, that makes ωk

a positive maximum. A typical time evolution as predicted
by (6) is shown in figure 1 for a simple 1D interface, and
compared with the result of the full two-field model for the
same parameters. Figure 1 also shows that, provided ε is small,
both descriptions (two-field and effective one-field) yield very
similar results for the morphology. This statement can be
made more quantitative by comparing the time evolution of the
roughness W (t) (root mean square of the height fluctuations)
and the dot wavelength l(t) (measured as twice the average
distance between consecutive minima and maxima) in figure 2.
We can distinguish roughly three different time regimes in the
evolution. The first one (for t � 3 × 105 units) is associated
with the linear instability, corresponding to the selection of a
time-independent wavelength and exponential growth of the

7 Termed as a conserved Kardar–Parisi–Zhang (CKPZ) nonlinear term in the
kinetic roughening literature [26].

roughness. After that, an intermediate transient occurs (up
to t � 2 × 106 units) during which the roughness grows
at a much lower rate and the pattern wavelength increases
following an effective power law (coarsening) l(t) ∼ t0.45.
For very long times (fluence) both the roughness and the
wavelength reach stationary values. It is remarkable that both
descriptions provide the same outcome, both qualitatively and
quantitatively.

The behavior of the roughness and the wavelength from
medium to long times is determined by the two nonlinearities
that appear in equation (6). As is well known, the
linearization of equation (6) predicts unbounded growth of
the dot amplitude, so that the stationary state that is reached
necessarily occurs from the interplay of the nonlinear terms.
Before considering this, let us recall the fact that an equation
such as equation (6) may under some circumstances also lead
to unbounded amplitude growth. This is the case when so-
called cancellation modes occur in the system. These are
Fourier modes of the height that, while being linearly unstable,
are associated with an exact cancellation of the nonlinear terms
in the equation of motion. Thus, any unstable mode with
wavevector magnitude k0 is a cancellation mode if λ(1) +
k2

0λ
(2) = 0. For this condition to occur, necessarily (within the

above sign convention) λ(1) and λ(2) must have opposite signs.
This is the case generically for one-field derivations [29–31],
for whose parameter values equation (6) leads to exponential
blow-up. However, from the formula above we see that
equation (6) can be free of cancellation modes as long as
λ(1)λ(2) > 0. Even if λ(1)λ(2) < 0 we will have bounded
growth of the dot amplitude if k0 is linearly stable, which
is only verified if k0 = |λ(1)/λ(2)|1/2 > |ν/K|1/2. Indeed
|λ(1)/λ(2)| 	 |ν/K| ∼ ε since |λ(1)/λ(2)| = 1/|
| ∼ O(1)

in our ε expansion, and therefore modes for which nonlinear
terms cancel one another are outside the unstable band for
small ε and decay exponentially in time. Thus, the two-field
formulation allows us to eliminate issues of mathematical ill-
posedness met by previous continuum models.
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Figure 2. Temporal evolution of the roughness (a) and dot wavelength (b) for the (1D) two-field model (triangles) and for the (1D counterpart
of the) effective equation (6) (circles) for the same parameters as in figure 1. The dashed line corresponds to a power law as l ∼ t0.45.

Figure 3. 3D top views of morphologies predicted by equation (9) for r = 50 at (a) t = 50 and (b) t = 955.

3.2. Temporal evolution in 2D

A convenient way to fully explore the parameter space of
the full 2D equation (6) is to rescale time, target and growth
coordinates to a primed system t = (K/ν2)t ′, x = (K/|ν|)1/2x′
and h = (|ν|/λ(1))h′. Thus, for negative values of ν,
equation (6) transforms into the equivalent single-parameter
system (we drop the primes and the uniform velocity term v0):

∂t h = −∇2h − ∇4h + (∇h)2 − r∇2(∇h)2, (9)

where r = (|ν|λ(2))/(Kλ(1)) is a ratio between crossover
length scales associated with the linear and with the nonlinear
terms. In this way, any combination of parameter values in
the original equation can be studied in the equivalent system
through the appropriate rescaling. Conversely, dependence of
the system properties on r can be translated into the original
parameters once the coordinate rescaling is undone. Thus,
for example, for the numerical studies in this section we have

fixed the original equation parameters, equation (6), to v0 = 0,
−ν = K = 1 and λ(1) = 0.1, varying λ(2) in order to check
for the different values of r and the different behaviors of
equation (9).

Two snapshots of the time evolution of equation (9) are
shown in figure 3 for r = 50. We can appreciate the
appearance of dots with a typical lateral size that coarsens
with time. Figures 4 and 5 provide the height autocorrelation
function, 2D height power spectral density (PSD) and the
radial average of the latter, computed for the morphologies
of figure 3. While the 2D and the radially averaged PSDs
show coarsening (time shift to smaller wavevector values of
the position of the main ring or peak) and long-wavelength
disorder at long times, short-range order is made explicit by
the bright ‘rings’ in the height autocorrelation function. As for
the behavior of the roughness and wavelength (the latter now
estimated from the distance to the origin of the first maxima
of the autocorrelation function), they are computed in figure 6

5
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Figure 4. (a) Height autocorrelation function, (b) 2D PSD and (c) radially averaged PSD as computed for figure 3 (a).

Figure 5. (a) Height autocorrelation function, (b) 2D PSD and (c) radially averaged PSD as computed for figure 3 (b).

Figure 6. (a) Numerical values of the roughness and (b) dot size (wavelength) as predicted by equation (9) for different values of r . For
reference, the dotted lines correspond to effective power law behavior as W (t) ∼ t 0.73 and l(t) ∼ t0.40.

for several positive values of r . For increasing values of r , the
stationary state is reached later and for decreasing saturated
values of the roughness, while the duration of the intermediate
time regime increases during which the roughness grows as
an effective power law, e.g. W (t) ∼ t0.73 for r = 50. We
also see that, again for increasing r values, the intermediate
transient associated with wavelength coarsening lasts longer,
e.g. the l(t) ∼ t0.40 behavior found for r = 50. Actually,
in the r → ∞ limit equation (9) becomes the conserved KS

equation, for which analytical and numerical estimates yield

W (t) ∼ t and l(t) ∼ t1/2 [33–35]. Thus, we conclude

in particular that the exponent values for finite positive r are

effective values depending on system parameters (summarized

in r ). This could explain the variety of exponents reported in

the experimental literature: the value of the exponent is not

universal but, rather, it is effectively and strongly dependent on

transient behavior and/or finite size effects.

6
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Figure 7. (a) Typical stationary transverse cut profiles predicted by equation (9) for (bottom to top) r = 1, 2.5, 5, 10, 20 and 50 at t = 10 000.
(b) Stationary dot average lateral size as functions of r at t = 10 000. The dashed line in (b) corresponds to the analytical prediction given by
equation (10).

3.3. Stationary pattern properties

In the presence of coarsening, which is generically expected for
large positive values of r in equation (6), the values of the dot
amplitude and lateral size—rather than wavelength, since the
pattern is no longer sinusoidal once nonlinear effects set in—
differ from the linear estimates. Actually, there is no meaning
to linear amplitude, since this quantity is nonstationary within
the linear approximation, while the linear dot wavelength is
l� ∝ (K/|ν|)1/2. Typical stationary transverse cuts are depicted
in figure 7(a) for different values of r . As observed here,
larger stationary dot lateral sizes and less disordered profiles
are achieved for increasing values of r .

We can use equation (9) in order to derive approximate
predictions for the parameter dependence of the stationary
amplitude and dot size. Thus, we make the observations that (i)
coarsening is induced by the λ(2) nonlinearity, (ii) coarsening
is interrupted by the λ(1) nonlinearity and (iii) the stationary
shape of individual dots can be rather well approximated by
inverted circular paraboloids of amplitude A and radius l/2,
of the form h(x, y) = A − (4A/ l2)(x2 + y2). In order to
estimate the relation between A, l and r we assume that, when
coarsening stops, the spatial averages of the two nonlinear
terms can be equated within the lateral extent of a single dot.
This leads to the condition

〈(∇h)2〉dot = r〈∇2(∇h)2〉dot ⇒ l = √
32r , (10)

where 〈·〉dot denotes space average over a single dot. Actually,
this result is almost identical to an analogous one obtained
for the 1D case [36]. Comparison to results from simulations
can be found in figure 7(b). We can see that relation (10)
holds rather accurately for relatively large r values, for which
coarsening is substantial and loses accuracy for smaller r
values. Moreover, from figure 7(a) we see that A is essentially
independent of r , except for small r values for which we
find a very disordered profile. Since we wish to extract the
dependence of A and l on the original physical parameters we
undo the rescaling, taking into account that lateral distances

scale as x while vertical distances scale as h. In summary, we
expect for moderately large r values that

l ∼
√

K
|ν|r =

√
λ(2)

λ(1)
=

√
φ̄D

φγ0
− Reqγ2, (11)

A ∼ |ν|
λ(1)

= α2

α6
, (12)

where we have used equations (7) and (8). We see, on the one
hand, that the stationary values of l and A depend purely on
terms of erosive origin, such as ν and both λ( j) s. Nevertheless,
while A has no dependence on the transport processes, l
does depend on thermally related coefficients, such as D and
Req can be. If we take for definiteness expressions for the
α j parameters stemming from Sigmund’s Gaussian [12], and
ignore the potential dependence of D and Req with the ion
beam, we find that ASigmund ∼ a ∼ E , where a is the average
penetration depth and E is the average ion energy, while
lSigmund is energy-independent, and that both ASigmund and
lSigmund are flux-independent. To the best of our knowledge,
these are the first analytical estimates of the stationary features
of IBS nanopatterns; see below for a discussion in terms of
experimental evidence.

4. Oblique incidence for rotating targets

There is a different way in which the loss of in-plane symmetry
implied by an oblique beam can be circumvented, apart
from the previous normal incidence condition. This is so-
called Zalar rotation [37], by which the sample is rotated
simultaneously with irradiation at oblique incidence, in order
to suppress ripple formation while typically maximizing the
sputtering yield. Indeed, led by the work in [7] for InP, in
recent years this approach has been successfully employed in
order to produce nanometric dots with a remarkable degree of
uniformity and lateral order on a variety of targets, see a recent
overview in [5].

7
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Since we already have a closed evolution equation for the
surface height under oblique incidence conditions [17, 18], it
is natural to employ it in order to derive an equation for the
present case of rotating targets. In this, we follow Bradley’s
approach to Zalar rotation within the context of one-field
theories [38]. Thus, let us perform a rotation of angle ϕ in
the target coordinates to a new system with subindex r, as

xr = x cos ϕ + y sin ϕ,

yr = −x sin ϕ + y cos ϕ,
(13)

so that space derivatives are related as

∂

∂x
= cos(ϕ)

∂

∂xr
+ sin(ϕ)

∂

∂yr
,

∂

∂y
= − sin(ϕ)

∂

∂xr
+ cos(ϕ)

∂

∂yr
.

(14)

If we perform this change of coordinates in the height equation
for oblique incidence θ �= 0 [17, 18], we would get the
equation of motion for a beam that is not aligned with the
x axis but, rather, at an oblique azimuthal angle ϕ. We
now assume that the sample is rotating with a constant
angular velocity, ϕ̇, fast enough so that, effectively, it is as
if bombardment were taking place at all possible azimuthal
incidences simultaneously. In such a case we can get an
effective evolution equation by averaging over all values 0 �
ϕ � 2π . The result is [32]

∂t h = νr∇2h − Kr∇4h + λ(1)
r (∇h)2

− λ(2)
r ∇2(∇h)2 − λ(3)

r ∇ · [(∇2h
)∇h

]
, (15)

where the coefficients

νr = νx + νy

2
, Kr = 3Kx,x + 3Ky,y + Kx,y + Ky,x

8
,

λ(1)
r = λ(1)

x + λ(1)
y

2
, λ(2)

r = λ(2)
x,x + λ(2)

y,y + λ(2)
x,y + λ(2)

y,x

4
,

λ(3)
r = λ(2)

x,x + λ(2)
y,y − λ(2)

x,y − λ(2)
y,x

4
(16)

are expressed in terms of those of equation (42) in [18].
As expected, linear and nonlinear terms that contain odd
derivatives in space coordinates do not contribute after angular
average (the mathematical statement of the restoration of in-
plane symmetry) and the system is actually isotropic in the
target coordinates. However, note that this does not mean
that the equation is equal to the one for normal incidence.
Remarkably, in principle now the additional term appears ∇ ·
[(∇2h)∇h], which is naturally of the same order in powers of
h and in space derivatives as ∇2(∇h)2. Both terms are actually
equivalent in the 1D case. In the 2D case, one can show [32]
that the only other possible isotropic terms of the same order in
h and space derivatives are (∇2h)2 and (∇h) · ∇(∇2h). Given
that ∇ · [(∇2h)∇h] = (∇2h)2 + (∇h) · ∇(∇2h), we see that
the term with coefficient λ(3)

r is a mere linear combination of
the two.

We can make further progress by making use of the form
of the coefficients (16) given by equation (43) in [18]. After

substitution, we get

νr = −φα0(α2x + α2y)/2,

Kr = DReq(γ2x + γ2y)/2

+ α0(3α4xx + 3α4yy + α4xy + α4yx)/8

− α0(3
xα2x + 3
yα2y + 
xα2y + 
yα2x)/8,

λ(1)
r = −φα0(α6x + α6y)/2,

λ(2)
r = −φα0(
xα6x + 
yα6y + 
xα6y + 
yα6x)/4,

λ(3)
r = −φα0(
xα6x + 
yα6y − 
xα6y − 
yα6x)/4,

(17)

where we have generalized the parameter 
 in (8) to 
x,y =
φ̄Reqγ

−1
0 − φReqγ2x,y in order to allow for the possibility of

anisotropic surface tension coefficients, γ2x �= γ2y . Finally, for
the simpler (and more natural, for amorphous targets) case of
isotropic surface tension on the target, γ2x = γ2y = γ2, we
have that 
x = 
y = 
, and the previous formulae simplify
into

νr = −φα0(α2x + α2y)/2,

Kr = DReqγ2 + α0(3α4xx + 3α4yy + α4xy + α4yx)/8

− α0
(α2x + α2y)/2,

λ(1)
r = −φα0(α6x + α6y)/2,

λ(2)
r = −φα0
(α6x + α6y)/2,

λ(3)
r = 0.

(18)

Remarkably, in the latter case the effective equation for
rotating targets takes the exact same shape (albeit with different
coefficients) as for the normal incidence case, i.e. equation (6).
This provides an analytical justification for the strong
similarities found for IBS nanopatterning onto rotating targets
and under normal incidence conditions, generalizing analogous
results obtained for one-field approaches [38, 39].

As in the case of normal incidence, for the sake of
definiteness it is interesting to discuss equations (18) in
the light of some specific assumption on the distribution of
energy deposition. Similarly to the previous section, here
we make the standard choice of Sigmund’s Gaussian. Note
that (18) predicts the coefficients νr and λ(1)

r to be essentially
the means of their counterparts in the corresponding one-
field equation (for oblique incidence) [11, 12]. Moreover,
the coefficient λ(2)

r is directly proportional to λ(1)
r . As is

well known, Sigmund’s description successfully predicts [2]
the experimentally observed existence of a critical incidence
angle θc at which the ripples change their orientation by
90◦. At this critical angle α2x = α2y , while for still larger
angles α2x changes sign, α2y still being positive. Actually,
for such a distribution of energy deposition νr has been
shown [39, 40] to become positive for still larger incidence
angles, thus predicting the absence of pattern formation under
such experimental conditions.

Finally, we can again employ the predictions of section 3
for the stationary dot size and amplitude in the case of large r ,
and adapt them to the present case of rotating targets. Thus, by

8
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Figure 8. 3D top views of morphologies predicted by equation (15) for νr = −1, Kr = 1, λ(1)
r = 0.1, λ(2)

r = 0.5 and λ(3)
r = 2 at times (a)

t = 50 and (b) t = 955.

Figure 9. Height autocorrelation function (a), 2D PSD (b) and radially averaged PSD (c) as computed for figure 8 (a).

combining equations (11), (12) and (18), we get

lr ∼
√

λ
(2)
r

λ
(1)
r

=
√

φ̄D

φγ0
− Reqγ2, (19)

Ar ∼ νr

λ
(1)
r

= α2x + α2y

α6x + α6y
, (20)

again very similar to those found for normal incidence. If
we further assume Sigmund’s energy deposition and that
material transport is not affected by irradiation, one can readily
check [12] that both α2x,y scale in the same way with average
ion energy and flux, and similarly for α6x,y . We thus get again

ASigmund
r ∼ a ∼ E , with no flux dependence, while lSigmund

r is
again both energy- and flux-independent.

In the case of anisotropic surface tension on the target
(γ2x �= γ2y), as expected for substrates that remain
crystalline under irradiation [9], equation (15) does not reduce
to equation (6) and we must take into account the term
corresponding to λ(3)

r . In figure 8 we show two representative
morphologies described by equation (15) at different times.
Again, a dot structure appears at short times, which grows in

amplitude and coarsens in wavelength (lateral size) for later
times (see figures 9 and 10, where the height autocorrelation
function, the 2D PSD, and the radially averaged PSD are
depicted at two different times). In contrast to the normal
incidence morphologies, in this case irregularly inclined
paraboloids appear. For increasing values of λ(3)

r , the stationary
state is reached later, increasing the final wavelength (and the
coarsening transient) and the height disorder of the pattern, as
can be observed in figure 11 where the time evolution of the
roughness and the wavelength are depicted for different values
of λ(3)

r .

5. Comparison to experiments and discussion

Among the predictions of the present two-field description
of IBS nanopatterning, we can make a distinction between
those that depend sensitively on the details of the assumed
specific distribution of energy deposition, and those that are
robust to variations in such details. The latter properties
include the formation of nanodots that usually coarsen with
time and reach a stationary state characterized by a varying
degree of short-range order and long-wavelength disorder.

9
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Figure 10. (a) Height autocorrelation function, (b) 2D PSD and (c) radially averaged PSD as computed for figure 8 (b).

Figure 11. (a) Numerical values of the roughness and (b) dot size (wavelength) as predicted by equation (15) for −νr = Kr = λ(1)
r = 1,

λ(2)
r = 0.5 and different values of λ(3)

r . For reference, the dotted lines correspond to effective power law behavior as W (t) ∼ t 0.47 and
l(t) ∼ t0.33.

Moreover, it is expected that, independently of the statistics
of energy deposition, normal incidence conditions lead to
similar patterns as obtained for rotating targets. All these
features have indeed been found in experiments, as has been
recently reviewed in [5]. This robustness lays moreover on
deeper physical grounds such as symmetry, which explains
its apparent ubiquity in different theoretical formulations of
IBS [41].

There are still additional generic features that we expect to
be sufficiently robust. Thus, equations (6)–(8) predict that, for
conditions in which surface diffusion is essentially of thermal
origin, the only parameter in (6) that is independent of the
sputtering rate is K. In such a case, an increase in the sputtering
rate leads to faster saturation and a smaller stationary value
of the dot size and degree of short-range order [32]. Indeed,
the same trend has been found in IBS of Si targets at normal
incidence [42] when comparing the morphologies obtained for
an initial (100) surface orientation, and those obtained for the
(111) orientation on which the sputtering rate is measured to be
larger by 10%. In the case that material transport is enhanced
by irradiation, we expect K to depend on the sputtering rate.
For a linear dependence, all coefficients in (6) are proportional
to the flux and increasing flux rates will only induce a faster

dynamics but the same stationary morphological features.
We also expect that, since the inclusion of a non-zero λ(3)

for targets with anisotropic surface tension yields dots with
different shapes as compared with those obtained on isotropic
substrates, this points towards surface tension effects in the
specific shapes of the obtained nanostructures.

A second set of predictions from our present two-field
description requires making specific assumptions on the shape
of the statistics of energy deposition through collision cascades
and on parameters related with material transport. An example
was provided by the dependence of the stationary values
of the dot amplitude and lateral size A and l on physical
parameters for large values of r . In such a case, if we consider
Sigmund’s Gaussian distribution and ion-beam-independent
transport of material, we have seen that the prediction
is an energy-independent (respectively, linearly dependent)
stationary dot wavelength (amplitude) and a flux-independent
behavior of these magnitudes, both at normal incidence and
for rotating targets. The dependence of the stationary ripple
wavelength with the ion flux has been reported in a number of
experiments. Thus, for instance, it has been found to be flux-
independent both for GaSb [43] and for InP [40], as predicted
by (11) and (19), respectively. Thus partial agreement with
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experiments is achieved by the two-field implementation of
Sigmund’s energy distribution. On the other hand, these
predictions for large values of r contradict other observations
on, for example, GaSb at normal incidence [43] or on Si
onto rotating substrates [44] which also present other features,
such as lack of coarsening and of long-wavelength kinetic
roughening, which, interestingly, are generically present for
small r . Thus, in order to assess the actual predictive power
of this model, an unambiguous analytical formulation for the
dependence of all the terms with the experimental parameters
is still missing.

These results are mainly valid in the case of isotropic
experiments. For cases in which such a symmetry is broken,
either by the ion incidence angle or by preferential directions
in the substrate (such as in the case of metals where no surface
amorphization, and anisotropic surface tension and diffusion
are expected), anisotropic patterns are predicted (see [18] for
an extension to the case of general anisotropic experiments).
Even in these cases, the isotropic symmetry can be restored
by simultaneous target rotation, as discussed in the previous
section. Although the resulting equation, equation (15), has
not been extensively studied, anisotropic coefficients may give
rise to new morphologies and may even change the sign of
nonlinear terms (see equation (17)), breaking the up–down
symmetry and giving rise to holes or craters instead of dots
or mounds.

6. Conclusion and outlook

In this paper we have explored the two-field description
of nanopattern formation by IBS under normal incidence
conditions and for oblique incidence onto rotating targets. To
some extent, the main virtues of such a continuum formulation
over previous ones are: (i) the inclusion of local redeposition
of eroded material, which allows us to couple in a natural
(rather than ad hoc) way surface material transport with the
dynamics of the surface itself. This has allowed us to
account for important features of these patterns, such as short-
range in-plane ordering and wavelength coarsening, beyond
curing mathematical issues on well-posedness that affected
previous one-field models. (ii) Its generic nature that can be
adapted to improvements in the description of the statistics of
energy distribution, through modifications of the ‘geometric’
parameters αi jk of the excavation rate �ex, and of material
transport, through the dependence of D and Req on the ion
beam [45]. Thus, for instance, we have seen how our two-
field formulation allows us to analyze critically Sigmund’s
theory and transport material mechanisms and help to gain
more insight on the processes involved in ion-beam sputtering.
Moreover, appropriate changes in the parameters entering �ex

and �ad would also allow for the inclusion of additional
relaxation mechanisms that have been invoked elsewhere, such
as direct knock-on and/or ballistic drift [46].

Under certain assumptions we have been able to extract
for the first time analytical predictions for the values of the
stationary dot amplitude and lateral size which are qualitatively
very similar for the two geometries of incidence that have
been studied, and seen that agreement with experimental

observations is only partial. This fact, together with the lack
of sufficient understanding of issues such as the radiation
influence on surface material transport, and experimental
results such as long-range order [47], lack of pattern formation
at small incidence angles for some targets [48] and the role of
preferential sputtering in the case of compound semiconductor
targets [49], suggest the need for further microscopic work that
improves our current parameterization of the excavation and
addition rates, and thus allows for a wider predictive power of
continuum theories of IBS nanopatterning.
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[5] Muñoz-Garcı́a J et al 2007 Towards Functional Nanomaterials

(Springer Series: Lecture Notes on Nanoscale Science and
Technology) (New York: Springer) (Self-Organized Surface
Nanopatterning by Ion Beam Sputtering) at press
(arXiv:0706.2625v1)

[6] Facsko S et al 1999 Science 285 1551
[7] Frost F, Schindler A and Bigl F 2000 Phys. Rev. Lett. 85 4116
[8] Gago R et al 2001 Appl. Phys. Lett. 78 3316
[9] Valbusa U, Boragno C and de Mongeot F B 2002 J. Phys.:

Condens. Matter 14 8153
[10] Kuramoto Y 1984 Chemical Osillation, Waves and Turbulence

(Heidelberg: Springer)
[11] Cuerno R and Barabási A-L 1995 Phys. Rev. Lett. 74 4746
[12] Makeev M, Cuerno R and Barabási A-L 2002 Nucl. Instrum.

Methods Phys. Res. B 197 185
[13] Kustner M, Eckstein W, Dose V and Roth J 1998 Nucl.

Instrum. Methods Phys. Res. B 145 320
[14] Aste T and Valbusa U 2004 Physica A 332 548
[15] Aste T and Valbusa U 2005 New J. Phys. 7 122
[16] Castro M, Cuerno R, Vázquez L and Gago R 2005 Phys. Rev.

Lett. 94 016102
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